Investigation of FWM in dispersion-engineered GaInP photonic crystal waveguides

نویسندگان

  • Kevin Lenglé
  • Laurent Bramerie
  • Mathilde Gay
  • Marcia Costa E Silva
  • Sebastien Lobo
  • Jean-Claude Simon
  • Pierre Colman
  • Sylvain Combrié
  • Alfredo De Rossi
  • Kevin Lengle
  • Marcia Costa e Silva
  • Sylvain Combrie
  • Alfredo de Rossi
چکیده

We report on the investigation of four-wave mixing (FWM) in a long (1.3 mm) dispersion-engineered Gallium Indium Phosphide (GaInP) photonic crystal (PhC) waveguide. A comparison with a non-engineered design is made with respect to measured FWM efficiency maps. A striking different response is observed, in terms of dependence on the pump wavelength and the spectral detuning. The benefits and the limitations of both structures are discussed, in particular the trade-off between slow-light enhancement of the FWM efficiency and the conversion bandwidth. The time-resolved parametric conversion of short pulses at 10 GHz is also shown. Finally, the transmission capability of a 40 Gbit/s RZ signal is assessed through bit-error rate measurements, revealing error-free operation with only 1dB penalty. ©2012 Optical Society of America OCIS codes: (130.5296) Photonic crystal waveguides; (190.3270) Kerr effect; (190.4380) Nonlinear optics, four-wave mixing. References and links 1. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, and A. De Rossi, “Observation of soliton pulse compression in photonic crystal waveguides,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper QPDA10. 2. J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005). 3. A. Shinya, S. Matsuo, T. Yosia, E. Tanabe, T. Kuramochi, T. Sato, Kakitsuka, and M. Notomi, “All-optical onchip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008). 4. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010). 5. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010). 6. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express 19(5), 4458–4463 (2011). 7. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010). 8. S. Combrié, P. Colman, C. Husko, Q. V. Tran, and A. De Rossi, “Advances in III-V based photonic crystals for integrated optical processing,” Proc. SPIE 7608, 760815 (2010). 9. H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent Advances toward optical devices in semiconductor based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006). 10. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). 11. M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slowlight enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002). 12. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010). 13. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett. 36(9), 1728–1730 (2011). #165348 $15.00 USD Received 26 Mar 2012; revised 17 May 2012; accepted 29 May 2012; published 2 Jul 2012 (C) 2012 OSA 16 July 2012 / Vol. 20, No. 15 / OPTICS EXPRESS 16154 14. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14(4), 1658–1672 (2006). 15. L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244(10), 3528–3539 (2007). 16. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008). 17. C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12(10), 104003 (2010). 18. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). 19. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009). 20. S. Combrié, Q. V. Tran, A. de Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett. 95(22), 221108 (2009). 21. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35(9), 1440–1442 (2010). 22. M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced fourwave mixing in photonic crystal waveguides,” Opt. Express 18(20), 21024–21029 (2010). 23. S. Combrié, Q. V. Tran, E. Weidner, A. de Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, “Investigation of group delay, loss and disorder in a photonic crystal waveguide by low-coherence reflectometry,” Appl. Phys. Lett. 90(23), 231104 (2007). 24. P. Colman, S. Combrié, G. Lehoucq, and A. De Rossi, “Control of dispersion in photonic crystal waveguides using group symmetry theory,” Opt. Express 20(12), 13108–13114 (2012). 25. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95(6), 061105 (2009). 26. M. Patterson, S. Hughes, S. Combrié, N. V. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009). 27. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005). 28. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15(20), 13129–13138 (2007). 29. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. B. 72(16), 161318 (2005). 30. C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Nontrivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express 17(25), 22442– 22451 (2009). 31. C. Husko, P. Colman, S. Combrié, A. De Rossi, and C. W. Wong, “Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides,” Opt. Lett. 36(12), 2239–2241 (2011). 32. K. Lengle, A. Akrout, M. Costa e Silva, L. Bramerie, J. C. Simon, S. Combrie, P. Colman, and A. de Rossi, “10 GHz demonstration of four wave mixing in photonic crystal waveguides,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC) (2010), paper P2.24. 33. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17(20), 18340–18353 (2009). 34. M. R. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multi-order dispersion engineering for optimal four-wave mixing,” Opt. Express 16(10), 7551–7563 (2008). 35. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). 36. P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. De Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides,” Opt. Lett. 36(14), 2629–2631 (2011). 37. I. Cestier, A. Willinger, P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, and G. Eisenstein, “Efficient parametric interactions in a low loss GaInP photonic crystal waveguide,” Opt. Lett. 36(19), 3936–3938 (2011). 38. S. Mazoyer, A. Baron, J. P. Hugonin, P. Lalanne, and A. Melloni, “Slow pulses in disorder photonic-crystal waveguides,” Appl. Opt. 50(31), G113–G117 (2011).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear GaInP Photonic Crystal Waveguides

We report highly nonlinear GaInP photonic crystal waveguides. An extremely large hybrid nonlinearity was demonstrated in a static experiment as well as in a wavelength conversion scheme at 10 Gbit/s. Highly efficient four wave mixing was also demonstrated for either CW or pulsed pump signals. Photonic crystyals; Nonlinear optics; Nonlinear wave mixing

متن کامل

Improvement of Optical Properties in Hexagonal Index-guiding Photonic Crystal Fiber for Optical Communications

Waveguides with low confinement loss, low chromatic dispersion, and low nonlinear effects are used in optical communication systems. Optical fibers can also be employed in such systems. Besides optical fibers, photonic crystal fibers are also highly suitable transmission media for optical communication systems. In this paper, we introduce two new designs of index-guiding photonic crystal fiber ...

متن کامل

Designing slow-light photonic crystal waveguides for four-wave mixing applications.

We discuss the optimization of photonic crystal waveguides for four-wave mixing (FWM) applications, taking into account linear loss and free-carrier effects. Suitable figures of merit are introduced in order to guide us through the choice of practical, high-efficiency designs requiring relatively low pump power and small waveguide length. In order to realistically perform the waveguide optimiza...

متن کامل

Temporal solitons and pulse compression in photonic crystal waveguides

Solitons are nonlinear waves that exhibit invariant or recurrent behaviour as they propagate. Precise control of dispersion and nonlinear effects governs soliton propagation and, through the formation of higher-order solitons, permits pulse compression. In recent years the development of photonic crystals—highly dispersive periodic dielectric media—has attracted a great deal of attention due to...

متن کامل

Observations of four-wave mixing in slow-light silicon photonic crystal waveguides

Four-wave mixing is observed in a silicon W1 photonic crystal waveguide. The dispersion dependence of the idler conversion efficiency is measured and shown to be enhanced at wavelengths exhibiting slow group velocities. A 12-dB increase in the conversion efficiency is observed. Concurrently, a decrease in the conversion bandwidth is observed due to the increase in group velocity dispersion in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017